Всем известны регуляторы яркости осветительных приборов на основе ламп накаливания. В литературе описано множество самодельных тиристорных регуляторов, да и в продаже большой выбор, как отдельных регуляторов, так и встроенных в светильники и настольные лампы. Практически всегда это фазовые регуляторы позволяющие регулировать эффективное напряжение на нагрузке от максимального значения, равного напряжению в сети (или даже немного ниже его) до некоторого минимального значения.
Вот и получается, что все эти регуляторы могут только уменьшить яркость лампы относительно яркости при непосредственном её включении в сеть. Возможно это и хорошо... когда напряжение в сети соответствует номинальным 220V. Но существуют сети, особенно в сельской местности, в которых в определенные часы напряжение может снижаться до 160-180V и даже ниже. Соответственно снижается и яркость лампы. Более того, изменяется цвет её света ближе к красному, что особенно раздражает. И никакие фазовые тиристорные регуляторы не могут поднять напряжение на лампе выше напряжения в электросети.
Однако, способ увеличения напряжения есть. Достаточно вспомнить импульсный блок питания, например, телевизора, на выходе первичного мостового выпрямителя, при достаточной емкости накопительного конденсатора, постоянное напряжение достигает 300V и более. Таким же образом можно и повысить напряжение на лампе, запитав её через выпрямитель на мосту с накопительной емкостью на выходе. А для регулировки яркости преобразовать это постоянное напряжение в переменное прямоугольной формы, скважность которого регулировать переменным резистором. Вот такой регулятор сможет поднять яркость горения лампы выше чем при её непосредственном вкпючении в сеть. Правда, есть опасность перестараться и сжечь лампу, поэтому нужно быть осторожным и начинать регулировку с минимального значения. Принципиальная схема регулятора яркости настольной лампы, работающего выше описанным способом показана на рисунке.
Напряжение от электросети поступает через предохранитель FS1 на выпрямительный мост на диодах VD1-VD4. На выходе моста есть накопительная емкость 200 мкФ, составленная из двух оксидных конденсаторов на напряжение 400V (конденсаторы для блоков питания телевизоров). Далее полученное постоянное напряжение (около 300V при входном переменном 220V) поступает в нагрузку (то есть, на лампу), но через полевой мощный транзистор VT1.
На логических инверторах микросхемы D1 собран ШИМ-генератор, формирующий импульсы, скважность которых можно регулировать переменным резистором R3 в широких пределах. Практически получается плавная регулировка яркости лампы накаливания от нуля до максимума, на котором при напряжении сети 220V возможно даже перегорание лампы.
Элементы D1.1-D1.2 образуют мультивибратор импульсов частотой около 200 Гц. Скважность импульсов регулируется переменным резистором R3, с помощью которого можно изменять в широких пределах соотношения разрядного и зарядного сопротивления частотозадающей RC-цепи C5-R2-R3. Соответственно изменяется соотношение продолжительностей логических нулей и логических единиц на выходе мультивибратора, то есть, продолжительностей полуволн. И вот этот импульсный сигнал поступает на затвор полевого транзистора VT1. Продолжительность открытого состояния ключа равна продолжительности положительной полуволны импульсного сигнала, генерируемого мультивибратором.
Нить накала лампы будет работать своего рода интегратором, и эффективное напряжение на ней, вернее мощность, будет зависеть от скважности импульсов, приходящих на затвор VT1.